Localized Phosphorylation of a Kinesin-1 Adaptor by a Capsid-Associated Kinase Regulates HIV-1 Motility and Uncoating.
نویسندگان
چکیده
Although microtubule motors mediate intracellular virus transport, the underlying interactions and control mechanisms remain poorly defined. This is particularly true for HIV-1 cores, which undergo complex, interconnected processes of cytosolic transport, reverse transcription, and uncoating of the capsid shell. Although kinesins have been implicated in regulating these events, curiously, there are no direct kinesin-core interactions. We recently showed that the capsid-associated kinesin-1 adaptor protein, fasciculation and elongation protein zeta-1 (FEZ1), regulates HIV-1 trafficking. Here, we show that FEZ1 and kinesin-1 heavy, but not light, chains regulate not only HIV-1 transport but also uncoating. This required FEZ1 phosphorylation, which controls its interaction with kinesin-1. HIV-1 did not stimulate widespread FEZ1 phosphorylation but, instead, bound microtubule (MT) affinity-regulating kinase 2 (MARK2) to stimulate FEZ1 phosphorylation on viral cores. Our findings reveal that HIV-1 binds a regulatory kinase to locally control kinesin-1 adaptor function on viral cores, thereby regulating both particle motility and uncoating.
منابع مشابه
HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus
Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. Although a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-...
متن کاملKinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection.
Many viruses deliver their genomes into the host cell nucleus for replication. However, the size restrictions of the nuclear pore complex (NPC), which regulates the passage of proteins, nucleic acids, and solutes through the nuclear envelope, require virus capsid uncoating before viral DNA can access the nucleus. We report a microtubule motor kinesin-1-mediated and NPC-supported mechanism of ad...
متن کاملPhosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis
Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry, yet host factors involved in this process remain largely unknown. Here, we employ genetic screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as a host factor required for optimal uncoating of the HIV-1 core to promote viral cDNA synthesis. Depletion of MELK inhibited H...
متن کاملCorrection: Viruses Utilize Cellular Cues in Distinct Combination to Undergo Systematic Priming and Uncoating
[This corrects the article DOI: 10.1371/journal.ppat.1005467.].
متن کاملDistinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport.
Diaphanous (Dia)-related formins (DRFs) coordinate cytoskeletal remodeling by controlling actin nucleation and microtubule (MT) stabilization to facilitate processes such as cell polarization and migration; yet the full extent of their activities remains unknown. Here, we uncover two discrete roles and functions of DRFs during early human immunodeficiency virus type 1 (HIV-1) infection. Indepen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2017